Food Allergy
Molecular and Clinical Practice

Editor
Andreas L. Lopata
James Cook University
College of Public Health, Medical & Veterinary Sciences
Centre of Biodiscovery and Molecular Development of Therapeutics
Douglas, Queensland, Australia
Cover photograph reproduced by kind courtesy of Dr. Sandip Kamath.
Preface

Allergy-related diseases are today recognized as reaching epidemic proportions, with up to 30% of the general population suffering from clinical symptoms ranging from urticaria, rhinitis and asthma to life-threatening anaphylactic reactions.

The main contributors to the increasing prevalence of allergy seem to be very diverse including increasing immunological predisposition (‘atopy’), changing food consumption and well as living conditions. The dramatic increase of allergic diseases is not only seen in the developed world, but increasing evidence indicates that also developing countries are considerably affected. Already over fifty percent of the world population is living in Asia, where not only food consumption, but also food allergies are very different from what is mainly published from Western countries. In the research efforts in the field of food allergy two main questions are often asked: What makes one person allergic to a particular food and not the other? Furthermore, Why are some foods and food proteins more allergenic than others? In addition it is very difficult to predict the severity of clinical reaction and the amount of allergen required to elicit these reactions.

Major food allergens from a small number of sources were identified and purified as early as the 1970s. A boost in the number of newly identified allergens was elicited by the general availability of recombinant DNA technology in the late 1980s. The ever-growing IUIS Allergen Nomenclature Database contains currently over 840 allergens from 252 sources and their isoforms and variants. Currently we know about 290 food allergens from 98 different food sources.
Recent developments into the molecular nature of allergenic proteins enabled us to classify most allergens into few protein families with limited biochemical function. Allergenic proteins can be classified into approximately 130 Pfam protein families, while the most important plant and animal food allergens can be found in 8 protein superfamilies and is discussed in detail in Chapters 1 and 2.

The correct diagnosis of a food allergy can be complex, but includes a convincing clinical history as well as the presence of elevated levels of specific IgE antibody to allergenic proteins in a given food. Therefore, detailed knowledge about the food specific allergenic proteins is central to a specific and sensitive diagnostic approach. The different allergens of peanut, egg, fish, shellfish and food contamination parasites and their diagnostic application are detailed in Chapters 3 to 7.

The food industry is one of the largest employers of workers with about 10% and therefore is the allergic sensitisation to food borne proteins at the workplace not surprising. Workers at increased risk of allergic sensitisation include farmers who grow and harvest crops; factory workers involved in food processing, storage and packing; as well as those involved in food preparation (chefs and waiters) and transport and is detailed in Chapter 8.

Research in food allergies and allergens is much more complex than investigating inhalant allergens since food proteins often undergo extensive modifications during food processing. Furthermore these allergenic proteins are embedded in a complex matrix and may undergo physicochemical changes during digestion and subsequent uptake by the gut mucosal barrier and presentation to the immune system, and have been highlighted in Chapter 9.

Furthermore, food processing results often in water-insoluble proteins, which makes the traditional serological analysis of allergenicity difficult as well as detection and quantification in the food matrix. The approaches and problems of quantifying allergen residues in processed food are detailed in Chapter 10.

To characterize allergens better but also develop better diagnostic and therapeutics, recombinant allergens are increasingly utilized.
Unlike natural allergens or allergen extracts, the production of recombinant proteins is not dependent on biological source material composed of complex mixtures of allergen isoforms. The use of recombinant allergens has revolutionized diagnosis, enabling clinicians to identify disease eliciting allergens as well as cross-reactivity pattern, thereby providing us with the tools necessary for personalized allergy medicine and therapeutics and is detailed in Chapter 11.

Food allergy is a growing problem globally carrying a huge socioeconomic burden for patients, families and the community. Although fatalities are fortunately rare, the fear of death is very real for each patient. Currently, there is no cure for any food allergy available, with management strategies focusing on complete avoidance and utilization of adrenaline as the emergency antidote for anaphylaxis. There is a very strong imperative for safe and effective specific therapeutics for food allergy and one strategy based on T-cell epitopes for peanut allergy is detailed in Chapter 12.

We hope that the joined effort by the authors will not only provide pragmatic information for current food allergy research but also serves as a foundation for significant new research that will advance our current knowledge.
Contents

Preface

1. Biomolecular and Clinical Aspects of Food Allergy
 Heimo Breiteneder

 1.1 Introduction
 1.2 Prolamin Superfamily
 1.2.1 Prolamins
 1.2.2 Bifunctional Inhibitors
 1.2.3 2S Albumins
 1.2.4 Nonspecific Lipid Transfer Proteins (nsLTPs)
 1.3 Cupin Superfamily
 1.3.1 Vicilins (7S globulins)
 1.3.2 Legumins (11S globulins)
 1.4 EF-hand Superfamily
 1.4.1 Parvalbumins
 1.5 Tropomyosin-like Superfamily
 1.6 Profilin-like Superfamily
 1.7 Bet v 1-like Superfamily
 1.8 The Casein and the Casein Kappa Family
 1.9 Calycin-like Superfamily
 1.9.1 Lipocalins
 1.10 Conclusions
 Acknowledgement
 References

2. Nomenclature of Food Allergens
 Christian Radauer

 2.1 Introduction
 2.2 Allergen Nomenclature
 2.2.1 Origin
2.2.2 Genus and Species Names 33
2.2.3 Allergen Numbers 33
2.2.4 Isoallergens and Variants 34
2.3 Submitting New Allergens to the WHO/IUIS Allergen Database
 2.3.1 Allergen Source 36
 2.3.2 Sequence Data 38
 2.3.3 Tested Patient Population 38
 2.3.4 Sensitization to the Submitted Allergen 38
2.4 Conclusions 39
References 39

3. Nut Allergy 41
Dwan Price, Wesley Burks and Cenk Suphioglu

3.1 Introduction 42
3.2 Why are Nut Allergens so Allergenic? 43
 3.2.1 Allergen Abundance 44
 3.2.2 Complex Structural Integrity 44
 3.2.3 Special Allergen Attributes 44
3.3 What Therapies are Currently Addressing Nut Allergy? 45
3.4 Exploring Causes of Nut Allergy 46
 3.4.1 Breaking Down Barriers 46
 3.4.1.1 Increased intestinal permeability 46
 3.4.1.2 Dermal barrier failure 49
 3.4.2 Initial Allergen Encounters—Is the Timing of Allergen Introduction Important? 49
 3.4.2.1 In utero 49
 3.4.2.2 Breast milk 50
 3.4.2.3 Early foods 51
 3.4.3 Immune System Development—Preparing the Gut for Nut Allergen Contact 52
 3.4.3.1 The mucosal response to microbe colonization and gut development 52
 3.4.3.2 Normal establishment of the microbiome 53
 3.4.3.3 Living conditions 54
 3.4.3.4 Birth type 54
 3.4.3.5 Infant feeding practices 55
Contents

7.3.4 Allergy and Misdiagnosis of Fish Allergy Post-Infection

7.4 Clinical Implications of Travelling and Globalization of Food Products on Health

7.5 Conclusions

References

8. Occupational Allergy and Asthma Associated with Inhalant Food Allergens

Mohamed F. Jeebhay and Berit Bang

8.1 Introduction—Food Industry and High Risk Working Populations

8.2 Food Processing Activities and Allergen Sources

8.3 Epidemiology and Risk Factors

8.4 Clinical Features and Diagnostic Approaches

8.5 Biological and Biochemical Characteristics of known Occupational Allergens

8.5.1 Seafood Allergens

8.5.2 Flour Allergens Including Enzyme Additions

8.5.3 Spice Allergens

8.6 Preventive Approaches

8.7 Conclusion

References

9. The Influence of Dietary Protein Modification During Food Processing on Food Allergy

Anna Ondracek and Eva Untersmayr

9.1 Introduction

9.2 Food Protein Modification: From Processing to Digestion

9.3 Thermal Food Processing

9.4 Specific Influence of Food Processing Methods on Allergenic Food Compounds

9.4.1 Peanut and Tree Nuts

9.4.2 Milk

9.4.3 Pollen Cross-reactive Food Allergens

9.5 Chemical Food Modification: Nitration of Dietary Proteins
9.6 Nitration as a Concern in Food Allergy
9.7 Further Chemical Modifications: Reduction and Oxidation of Food Proteins
9.8 Conclusions
Acknowledgements
References

10. Detection of Food Allergen Residues by Immunoassays and Mass Spectrometry
Sridevi Muralidharan, Yiqing Zhao, Steve L. Taylor and Nanju A. Lee
10.1 Introduction
10.2 Precautionary Labelling of Food Allergens
10.3 Immunoassays
10.3.1 Enzyme-linked Immunosorbent Assay (ELISA)
10.3.2 Non-competitive Assay for Food Analysis
10.3.3 Competitive Inhibition ELISA
10.3.4 Lateral Flow Devices (LFDs)
10.4 Development of an ELISA
10.4.1 Immunogen Preparation—Tree Nut Protein Extraction and Purification
10.4.2 Antibody Production
10.5 ELISA Optimisation
10.5.1 Coating and Blocking
10.5.2 Buffer System, Incubation Time and Colour Development
10.5.3 Cross-reactivity
10.5.4 ELISA Validation
10.5.5 Accuracy and Precision
10.5.6 LOD, LOQ and Detection Range
10.5.7 Food Matrix Interference
10.5.8 Food Processing
10.6 Mass Spectrometry for Food Allergen Detection
10.6.1 Sample Complexity, Sample Preparation and Clean-up
10.6.2 Allergen Detection—Intact Proteins and Complex Mixtures
10.6.3 Detection and Quantification of Allergen Peptides/Proteins in Food Using Mass Spectrometry
12. Peanut Allergy: Biomolecular Characterization for Development of a Peanut T-Cell Epitope Peptide Therapy
Jennifer M. Rolland, Sara R. Prickett and Robyn E. O’Hehir

12.1 Introduction
12.2 Clinical Features of Peanut Allergy
12.3 The Mucosal Immune Response to Peanut Allergens
12.4 Allergenic Components of Peanut
12.5 Biochemical Properties of Peanut Allergens
12.6 Specific Immunotherapy for Peanut Allergy
12.7 Development of a SPIRE Therapy
 12.7.1 Rationale for SPIRE Therapy
 12.7.2 Validation of Allergen SPIRE Therapeutics in Clinical Trials
 12.7.3 Mechanisms of Action of Allergen SPIRE Therapy
12.8 Design of a SPIRE Therapeutic for Peanut Allergy
 12.8.1 Mapping T-cell Epitopes of Major Peanut Allergens
 12.8.2 Determination of HLA-II Molecules which Present Peptides to T cells
 12.8.3 Refinement of Peptides for Ease of Production and Solubility, Confirmation of T-Cell Reactivity and Lack of IgE-mediated Basophil Activation
12.9 Conclusions
Acknowledgements
References

Index